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Abstract

Background: For large international research consortia, such as those funded by the European Union’s Horizon
2020 programme or the Innovative Medicines Initiative, good data coordination practices and tools are essential for
the successful collection, organization and analysis of the resulting data. Research consortia are attempting ever
more ambitious science to better understand disease, by leveraging technologies such as whole genome
sequencing, proteomics, patient-derived biological models and computer-based systems biology simulations.

Results: The IMI eTRIKS consortium is charged with the task of developing an integrated knowledge management
platform capable of supporting the complexity of the data generated by such research programmes. In this paper,
using the example of the OncoTrack consortium, we describe a typical use case in translational medicine. The
tranSMART knowledge management platform was implemented to support data from observational clinical cohorts,
drug response data from cell culture models and drug response data from mouse xenograft tumour models. The
high dimensional (omics) data from the molecular analyses of the corresponding biological materials were linked to
these collections, so that users could browse and analyse these to derive candidate biomarkers.

Conclusions: In all these steps, data mapping, linking and preparation are handled automatically by the tranSMART
integration platform. Therefore, researchers without specialist data handling skills can focus directly on the scientific
questions, without spending undue effort on processing the data and data integration, which are otherwise a
burden and the most time-consuming part of translational research data analysis.
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Background
The data coordination activities of large multi-stakeholder
research collaborations are becoming more complex. In-
creasingly, projects are citing the use of specialist know-
ledge management technologies such as the tranSMART
platform [1] as used by the IMI UBIOPRED, ABIRISK and
OncoTrack projects [2–5]. In reality, however, a

knowledge management platform alone is not sufficient to
provide the tools to support all of the data management
and coordination tasks to enable a consortium to gain the
maximum value from its data. Without a data coordin-
ation platform that not only provides a common point of
access for the accumulated data sets, but also allows a
seamless transfer to analytical tools, the effective exchange
of data, ideas and expertise is compromised, which
devalues the data and delays the progress of the project.
The motivation to improve such technologies is there-

fore twofold: Firstly, the system provides a single place
where data from all partners participating in the project
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can be deposited, collated, linked and then published
back to the whole consortium. Secondly, the data are
not just made available in curated form, but are also
made accessible. This is achieved by the use of flexible
user interfaces, combined with analytical and
visualization tools that can be used by all stakeholders
in the consortium and not just those with the special-
ist data handling skills such as bioinformaticians and
statisticians. A consortium that provides a data coord-
ination capability accelerates the work of the specialist
data scientist who can access the raw data from a
single location for specialist analysis. If this data co-
ordination capability additionally includes a know-
ledge management technology, this can empower the
wider community of scientists who are able to browse
and generate hypotheses from all of the data in an
accessible format.
In this paper, we present the broad overall systems

architecture developed by the eTRIKS consortium to
accommodate the data management requirements of
translational research consortia, using the IMI Onco-
Track project as a use case. Additionally, we present a
novel plug-in for tranSMART developed by the IMI
eTRIKS consortium to overcome some of the limitations
in cross-linking related datasets, such as those found
when exploring and conducting correlation analyses
using clinical data, experimental data from patient
derived ex vivo models and high dimensional “omics”
data. The data linking solution presented here is capable
of handling and integrating the majority of data types
encountered in translational medicine research, inde-
pendent of the medical indication, and should therefore
be generally useful for other consortia faced with similar
data management challenges.
In line with the challenges and requirements men-

tioned above, this knowledge management platform
intends to provide a common point to access and share
the accumulated, curated and pre-processed data sets as
well as testing hypotheses and facilitating exchange of
ideas.
The intended users and usages are:

1) All “end-users” that do not necessarily have
advanced IT skills to be able to explore the
integrated datasets with dynamic visual-analytics to
test new hypotheses immediately, without asking
bioinformaticians for every (explorative) analysis.

2) Bioinformaticians to select and download data
(curated or raw) for specific analyses.

3) Data managers as well as researchers to collect,
organise, store and disseminate data during the
course of the project.

4) Project managers to oversee project progress in
terms of available data and metadata.

We would like to emphasis that the analytical tools
provided on the platform are not meant to replace all
advanced analyses that might be carried out by trained
bioinformaticians and biostatisticians, who nevertheless
can benefit from the reduced time and effort needed for
data preparation.

Implementation
The IMI OncoTrack consortium
The IMI OncoTrack Consortium [3] is an ambitious
international consortium that is focused on advancing
“Methods for systematic next generation oncology
biomarker development”. As one of the Innovative
Medicines Initiative (IMI) oncology projects, it brings
together academic and industry scientists from more
than twenty partner institutions in a research project to
develop and assess novel approaches for identification of
new markers for the treatment response of colon cancer.
At the core of OncoTrack are two patient cohorts that,

either prospectively at the point of primary colon cancer
surgery or retrospectively at the point of metastasis
surgery are sampled in order to build a colon cancer tis-
sue bank containing both primary and metastatic
tumour samples, together with associated normal tissues
and biofluids. A part of each tissue sample is also used
to develop in vitro 3D cell cultures and in vivo xenograft
models that are used to study response to standard and
experimental therapies.
The tissue samples are processed to build collections

of DNA, RNA, serum and circulating tumour cells that
are then analysed to generate an in-depth description of
the genome, transcriptome, methylome and proteome
both of the tumour and the biological models. This
approach uses a broad panel of methods such as next
generation sequencing, proximity extension assays, re-
verse phase protein arrays, methylation arrays and mass
spectrometry. The patient-derived models also provide
platforms to study the role of tumour progenitor or ‘can-
cer stem cells’ in the pathogenesis and evolution of
colon cancers.
Finally, data from all of these platforms are combined

using a systems biology approach that can be used to make
personalised predictions about how an individual may
respond to therapy. The systems biology model of the can-
cer cell incorporates the combined results of genome, tran-
scriptome, methylome and proteome analyses [6].
The coordination of these different collections of data

requires core systems to be used to perform the data
collection and integration tasks. We would like to note
that the “data integration” related to the work reported
here are the steps and procedures to transform and store
data from subject level, sample level and derived animal
models as well as across different data types (drug
response, different molecular and ‘omics data) in an
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interlinked manner in a data warehouse. In this way
users are able to filter data in any layer/type and query
related data in the same or different layer/type with a
few mouse clicks and subsequently test their new
hypotheses. As shown in Fig. 1 and detailed below, the
OncoTrack data management work package imple-
mented OpenClinica [7] and developed the OncoTrack
DB [8] as central repositories for clinical and biological
data, respectively. Here, we describe the collaborative
effort to interface these data repositories with tranS-
MART, to provide an interactive user interface for
exploration and preliminary data analysis.

OpenClinica: electronic data capture Fig. 1
The first component of the data coordination platform
is the OpenClinica Electronic Data Capture system

(EDC, https://www.openclinica.com/; https://github.com/
OpenClinica/OpenClinica). OpenClinica provides the cap-
ability for the clinical sites to record electronically all of
the patient data from different visits and to deposit these
in a central database. The system enables the design of
specific data entry conventions and data validation checks.
These features ensure high data quality by providing all
clinical sites with identical case report forms and by flag-
ging data entry errors so they can be rapidly fixed. The
user interface is made available through a standard web
browser technology so that it requires no installation of
software, allowing it to be readily adopted by all clinical
sites. In order to ensure data privacy and compliance with
data protection legislation, access to OpenClinica is
IP-restricted and each clinical site can access only to the
data for their own patients. In compliance with the

Fig. 1 The components of the OncoTrack data coordination operation. The platform comprises three major components: the Electronic Data
Capture System (EDC, OpenClinica), the Central Data Repository (OncoTrack DB), and the Data Integration System (tranSMART). The OpenClinica
EDC system is used to collect medical history and observational patient data from clinical sites during the studies and feeds the structured data
to the Central Data Repository. The Central Data Repository, OncoTrack DB is a sample indexed content management system. Data and results
generated in the laboratories (before integration) are deposited and exchanged here. In order to link the different data types and layers, the data
collected in the OncoTrack DB are integrated in the Data Integration System, tranSMART. The tranSMART data warehouse provides deep linking
and integration between the clinical and laboratory data and a set of tools for the exploratory analysis of the integrated data
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institutional ethics committee and patient data privacy
regulations, only a subset of the clinical data is made avail-
able to all consortium scientists through OncoTrack DB.

OncoTrack DB: sample indexed content management
The Oncotrack DB is software based on DIPSBC (data
integration platform for systems biology collaborations),
further developed by Alacris Theranostics and adapted
to the specific needs of the OncoTrack project [8]. It is
best described as a “Sample Indexed” Content
Management System (CMS). It supports the typical
features of a CMS to store, version control and manage
collections of files and also enables project management,
dissemination and progress tracking as well as allowing
multiple channels for data access (eg. web interface,
RESTful API). File formats were developed to store the
results of the different laboratory analyses including the
NGS based genome and transcriptome analysis, the ex
vivo drug response experiments and the molecular char-
acterisation of tumour samples. For each experimental
data type, a unique upload interface was deployed to
handle specific requirements with regard to data produc-
tion frequency, volume and format as well as transfer
method (i.e. web interface, RESTful API). Additionally,
the OncoTrack DB indexes each of these data files with
unique sample identifiers, so that each file can easily be
filtered to locate and sort all data by cohort, experimen-
tal platform or patient. Throughout this work, we have
adopted generally accepted data standards for ‘omics,
clinical data etc. where applicable, inter alia CDISC
compliant terminology for clinical data using Study
Data Tabulation Model (SDTM), high-throughput se-
quencing data standards (e.g. FASTQ, BAM), gene se-
quence variations data format (VCF) or Systems
Biology Markup Language (SBML) for computational
models. In addition, data was loaded into a relational
database and mapped to respective reference stan-
dards (e.g. Ensembl, UniProt, miRBase) to allow com-
parability and ensure compatibility. This allowed for
more advanced data access and querying of available
data sets.

tranSMART: knowledge management data warehouse
To make the data collected in OpenClinica and the
OncoTrack DB accessible to the entire consortium in a
systematic way, the tranSMART knowledge management
platform was used. tranSMART is an open-source data
warehouse designed to store data from clinical trials, as
well as data from pre-clinical research, so that these can
be interrogated together in translational research pro-
jects. tranSMART is a web-based system, designed for
use by multiple users, across organizations. Prior to
uploading data into tranSMART, a curation step (to
adapt formats and define the data tree) needs to be

performed. The data pre-processing is handled during
this curation phase and ensures that the end-user is pre-
sented with data sets upon which valid hypotheses can be
based. To ensure data integrity, it is recommended that
the pre-processing and uploading be restricted to a limited
group of data curators, working with uniform ETL scripts
(https://github.com/transmart/tranSMART-ETL).
The data were organised in 3 core collections: 1) the

observational clinical cohorts, 2) the drug response data
from the cell-line models and 3) the drug response
data from the xenograft models (see Fig. 2). The high
dimensional data from the molecular analyses were
linked to these collections so that users could browse
and analyse:

� Variants among germline, primary and metastatic
tumour material

� Confirmatory genomic analyses of xenograft and cell
cultures

� Quantification of RNA transcripts from clinical and
preclinical samples

� Quantification of small non-coding RNA (miRNA)
� Analysis of DNA Methylation

The implementations of the functions reported in this
manuscript have been integrated into the tranSMART
main release, starting with version 16.2 (https://wiki.
transmartfoundation.org/pages/viewpage.action?pageId=
10126184). The code can be accessed under:

https://github.com/transmart/transmartApp and
https://github.com/transmart/SmartR
The documentation can be found at: https://transmart-
app.readthedocs.io/en/latest/
A description of and link to a public demonstration
version of the tranSMART instance can be found at
https://wgu.pages.uni.lu/etriks-oncotrack/

Dynamic dataset linking
The Oncotrack consortium based its approach to bio-
marker discovery on the innovative experimental design
of creating collections of patient derived pre-clinical
models. Tumour tissue collected during surgery from
both the primary and metastatic tumours was used to
create in vitro 3D-cell line models and xenograft in vivo
models that could be linked back to the original patient.
Cell lines and xenografts were used to study the re-
sponse to a standard panel of established and experi-
mental colon cancer drugs. The combination of deep
molecular characterization of the tumours and their
associated models with data on drug response provides
the scientist with the necessary information for identifi-
cation of candidate biomarkers for prediction of
response to treatment.
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Data generated in the OncoTrack study is organised
so that each sample can be linked back to the patient
from whose tissue it was generated, as shown in Fig. 2a.
The primary data level is the human cohort, with the

primary entity being the subject. Patient tissue samples
collected from subjects are profiled using omics and
NGS technologies creating datasets directly attributable
to the subject. A second data level is generated from the
three disease modelling platforms used by OncoTrack:
xenograft based in vivo models, 3D cell line based in
vitro models (‘biological models’) and cell simulation
based in silico models. Each of these is used to explore

the tumour samples in different experiments such as
response to standard clinical or novel experimental ther-
apies. The biological models are then profiled using
NGS and omics analysis technology, generating their
own dataset and variants. The primary entity of this
data is the model used in the experiment (e.g. cell
line) with a lineage to the original patient. This two
level lineage hierarchy of the datasets is shown
conceptually in Fig. 2a.
This approach contrasts with the data model of tranS-

MART that has (by design) been developed with con-
straints regarding data organization. These constraints

Fig. 2 The OncoTrack dataset structure. a The complex OncoTrack data hierarchy with OMICS datasets directly generated from patient material
and datasets generated from patient derived pre-clinical in vivo, in vitro and in silico models. b Due to constraints in tranSMART (v16.1) unable to
represent this hierarchical use of samples, data has been organised as a series of different independent collections. One collection for data
derived directly from patient samples and other collections for data derived from the pre-clinical models. c A solution we provided with linkage
back to human subject and a tool to automatically map data using this linkage
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are required in order to achieve the required interactions
of a flexible data model to a suite of analysis tools. These
constraints mean that when modelled in tranSMART
the data has to be modelled as 4 independent data sets
(Fig. 2b) or coerced to a structure resembling Fig. 2a but
at the loss of being able to use the analysis and visualisa-
tion tools.
Our objective was to create a mechanism where 1)

data sets could be analysed independently and 2) we
were able to respect the lineage of the samples to enable
integrated analysis between the different levels in the
hierarchy in the dataset. Our solution, shown in Fig. 2c
is to maintain the basic tranSMART structure shown in
Fig. 2b, augmented with additional metadata about
lineage, mapping all level two datasets to their “parent”
in the cohort dataset.
Additionally, we developed PatientMapper, a plugin-

tool for tranSMART designed to integrate data sets from
different levels of the hierarchy referring to these
mapped lineage relationship metadata. When applied
across datasets with the lineage mapping, Patient
Mapper uses the back-links to correctly integrate and re-
shape the data to be compatible with the tranSMART
analytics suite.

Data curation for dynamic data linking
To support dynamic data-linking among datasets, we
developed an enhanced curation process to create a data
model that includes lineage relationships between differ-
ent entities. To achieve this, we developed a new map-
ping logic, in which the parent-child relationships are
kept for all levels of datasets to the patient from which
the samples/derived model are derived (see Fig. 2c). For
example: a patient is a parent of n patient samples.
Those samples can again be a parent of m in vitro
models (like e.g. xenografts or xenograft treatment
groups). Those in turn can be parents of p samples used
for ‘omics measurements, or even of ‘child’ in vitro
models, etc.)
In tranSMART, variables are represented in a tree struc-

ture (i2b2 tree, see Fig. 3 and see also Additional file 1)
[9]. The design of the data tree structure should organise
the data to allow easy exploration of datasets. In line with
the above considerations, in the OncoTrack-tranSMART
integration, we separated different data levels and data
types into separate study-trees to better organise the
different categories (clinical data and lab data). Under the
Clinical Data tree, general subject information (e.g.
Clinical site, Cohort, etc.) of the participating subject are
stored. The Lab Data stores data generated in the lab (e.g.
Treatment Data, OMICS Data). In each subtree under the
“Treatment Data” and the “OMICS Data”, the subject/
sample information as well as the interrelationships to
other subtrees are organized in the “Characteristics”, and

Fig. 3 Integration of OncoTrack data into tranSMART: (1) Left panel:
Overall data representation in the TranSMART data tree. Right panel:
easy customized cohort building with drag-and-drop. (2) Cascaded
querying with cohort linking/selection tool PatientMapper. (3)
Generating summary statistics of a miRNA of choice by dragging the
miRNA-Seq node to the right panel and providing miRNA ID using the
HiDome plugin. (4) Performing miRNA-ome wide heatmap analysis
between the two sub-cohorts (here responder vs. non-responder for a
selected drug treatment) using SmartR workflows
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the corresponding measured data are stored within the
subtree labelled with the data type (e.g. Xenografts,
DNA_Methylation, etc.)
Data curation and transformation are a prerequisite

for the implementation of the data model described
above. These steps are sometimes time consuming and
require detailed knowledge regarding the necessary
pre-processing of each data type as well as familiarity
with tranSMART ETL requirements and scripting skills.
Within the work reported in this paper, however, the
curation need only be performed once and periodic
updates (while new data of the same data type are gener-
ated) can be done automatically with pipelines developed
during the manual curation. Data contributed by the
different partners contributing to OncoTrack were
collected centrally in OncoTrack DB. To avoid the risk
of variability in the process, curation and transformation
were performed centrally using one uniform set of ETL
scripts. Details of each curation step are described in the
Additional file 1.

Dynamic cross-layer data link tool (PatientMapper)
One typical query/analysis that requires the above-men-
tioned data model could be: what are the differences be-
tween xenograft models that respond to a certain drug
and those that do not respond to the same drug: how do
their parent samples differ in transcriptome and/or
epigenome? To enable users to easily explore such a data
model with dynamic cross-layer data, we have developed
a user-friendly data linking tool (PatientMapper. see Fig. 3
(2)) that allows users to easily link sub-cohorts they have
built on any level of data to datasets in other levels for the
corresponding parent/children sample/subjects. This tool
is integrated into tranSMART and updates cohort
selection automatically based on the linking parameters
selected by the user. From this point on, the other analysis
and exploration of the updated cohorts can be performed
within the same platform. This tool is not limited to
mapping sample level data to patient level data but can be
used to map data across any levels as long as they share a
common lineage.

Results visualization
High Dimensional and Omics Exploration (HiDome) is a
novel functionality for tranSMART that was developed
through eTRIKS Labs [10]. It extends the platform’s core
capabilities with regard to handling omics data. HiDome
allows the visualization of individual components of
these data sets, for example the read count distribution
for a given miRNA (see panel 3 in Fig. 3). It also enables
creation of cohorts based on omics data set components,
for instance comparing patients with a high versus a low
read count for a specific miRNA. Details about the

development of HiDome are described in a separate
paper [11].
SmartR is another new functionality for tranSMART

that was also developed through eTRIKS Labs [12]. This
functional module enables the user of tranSMART to
perform interactive visual analytics for translational
research data, including both low-dimensional clinical/
phenotypic data and high-dimensional OMICS data (see
panel 4 in Fig. 3).

Results
Oncotrack TranSMART
The current Oncotrack TranSMART deployed to the
consortium is based on the eTRIKS distribution (eTRIKS
V3) of tranSMART 16.1. A summary of data that have
been modelled, curated and loaded in the OncoTrack
tranSMART server is shown in Fig. 4.

Case study
To illustrate how the OncoTrack TranSMART can facili-
tate the exploration and analysis of data, we present here
the use case already introduced in the discussion of the
PatientMapper (see above). We would like to emphasise
that this paper is not meant to focus on any specific
scientific questions within the OncoTrack project, which
have been reported in a separate paper [13], but rather
to demonstrate the advantage of the tranSMART plat-
form in solving data integration problems in general. For
this reason, the marker annotations are blanked out.
The use case: For two xenograft groups, one whose

tumours respond to treatment with Afatinib, the other
one whose tumours are resistant, what biomarkers (e.g.
miRNA) are different in their parent patient tumor
samples? And how to check whether a marker of interest
is differentially presented?
The steps: Researchers who use the OncoTrack-tranS-

MART can achieve this goal easily by first building the
two cohorts (xenografts Afatinib responders vs xeno-
grafts Afatinib non-responders) by dragging the Afatinib
data-node and treatment response TC values (with fil-
ters, here < 30 and > 100) from the data tree into cohort
selection (See Fig. 3 (1) for details). In order to get the
miRNA data of the corresponding source patient, users
can link the cohorts that were built using the xenograft
level data to patient level data (here: miRNA sequencing
data) using the GUI tool PatientMapper (Fig. 3 (2)) that
will automatically handle the many-to-one relationship
across the different data layers. In this example, the pa-
tient level miRNA expression profile (from miRNA-Seq)
is linked to the xenograft level treatment response data
by simply dragging-and-dropping their Parent Patient ID
branch on the i2b2 tree to the PatientMapper tool.
With this new cohort after data mapping, researchers

can easily check and visualize the corresponding miRNA
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sequencing data between the two sub-cohorts via the
Summary Statistics function in tranSMART, by dragging
the miRNA sequencing data node into it (See Fig. 3 (3)).
Researchers can extend the same steps to analyze the

differences across the complete miRNA data set, using a
few mouse-clicks to run the SmartR workflow (Fig. 3
(4)) to explore and identify differential biomarkers be-
tween the responders and non-responders. In all these
steps, data mapping, linking and preparation are handled
automatically by the OncoTrack-tranSMART integration
platform. Therefore, researchers can focus directly on
the scientific questions, without spending any effort on
processing the data and data-integration, which is other-
wise a burden and the most time-consuming part of
translational research data analysis.

Discussion
Data platforms for translational medicine and cross-omics
integration
Recent reviews have summarized many of the existing
computing and analytical software packages designed to
ease integrated analysis of ‘omics and/or clinical data
[14–16]. Those platforms are either repositories with an
existing infrastructure or solutions requiring deploy-
ment. The advantage of the first type of solutions is their
out-of-the-box usability, but this sacrifices the flexibility
of configuration and toolset management. This type is
represented by technologies like STRIDE [17], iDASH
[18], caGRID and its follow up, TRIAD [19, 20] or BDDS
Center [21]. Many platforms in this category focus on a

specific disease, like cBioPortal [22] or G-DOC [23, 24]
for cancer, or COPD Knowledge Base [25] for pulmon-
ary dysfunction. The second family of solutions requires
deployment on the user’s infrastructure, often requiring
substantial storage or High-Performance Computing
(HPC) capabilities, but allows more flexibility in the
setup and easier development. As a result of their
configurable nature, such solutions provide support to
ongoing projects as (part of ) their data management
platform to handle complex data. Examples in this
group are BRISK [26], tranSMART [1] or Transmed
[27]. Informative use cases of such platforms are
SHRINE [28] and DARiS [29], where well-defined de-
mands of clinical research projects drove the design
and implementation of infrastructure supporting
translational medicine.
Besides these platforms, there are also many solutions

that target web-based integrated analysis of ‘omics data.
Some well-known examples are EuPathDB (a eukaryotic
pathogen genomics database resource, [30]), the DNA
Microarray Inter-omics Analysis Platform [31], Mayday
SeaSight (combined analysis of deep sequencing and
microarray data, [32]), GeneTrail2 (multi-omics enrich-
ment analysis, [33]), OmicsAnalyzer (a Cytoscape plug-in
suite for modeling ‘omics data, [34]), PathVisioRPC
(visualise and analyse data on pathways, [35]), 3Omics
(analysis, integration and visualization of human tran-
scriptomic, proteomic and metabolomic data, [36]) and
PaintOmics (joint visualization of transcriptomics and
metabolomics data, [37]).

Fig. 4 An overview of OncoTrack data that have been modelled, curated and loaded in the OncoTrack tranSMART Server
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Among the above-mentioned solutions, tranSMART
stands out as a community-driven, rapidly growing,
web-based data and visual-analytics platform for clinical
and translational research [1, 16]. TranSMART is being
used by many (> 100) organizations and consortia
around the world [2–5, 16, 38–40]. It enables the inte-
grated storage of translational data (clinical and ‘omics)
by providing interlinks between different data-types and
it allows researchers to interactively explore data as well
as to develop, test and refine their hypotheses. These
features are essential in order to support multi-party
consortia like OncoTrack, that involve researchers with
very diverse background working together on the data-
sets generated during the project. In the eTRIKS consor-
tium, the platform has been further developed to
incorporate more advanced, user-friendly and portable
functionalities [40–44].
This paper describes the approach used by eTRIKS to

provide an interface between the data architecture in the
OncoTrack consortium and tranSMART. We also high-
light the development of a new plug-in for the tranS-
MART platform to support dynamic data-linking among
different datasets and datatypes in tranSMART.
The consortium model approach to research problems

is becoming increasingly successful, as seen by the
continuation of the European Innovative Medicines
Initiative and the similar programs such as CPATH and
the Accelerated Medicines Partnerships in the USA.
There is increasing awareness among both funding agen-
cies and the coordinators of large consortia, that data
coordination and knowledge management capabilities
are prerequisites for data to be integrated and used by
all stakeholders in the collaboration and therefore con-
stitute a key part of a project’s operational design. Devel-
oping a strong data coordination capability enables:

� Project Coordinators to understand the progress of
data generation by different laboratories within the
project, to help manage the scientific deliverables of
a project and to identify in an early stage any data
quality problems

� Clinical and Laboratory scientists, as by interacting
with a knowledge management platform they have
access to all of the data from across the consortium,
not just the sections they generated themselves

� Data Scientists, Bioinformaticians and Statisticians
to have access to clean, curated and linked datasets
that represent the master version of data, saving
them time in performing their own data preparation

While there are significant advantages to the invest-
ment in such a capability it should be recognised that
there is no gold standard for data and knowledge man-
agement. As we have shown here, 3 key components

(Open Clinica, OncoTrack DB, tranSMART) are used to
collect, organise, publish and support analysis of the data
generated in the OncoTrack consortium. While all of the
software is Open Source and does not require a license for
its implementation, there are operational costs in both the
underlying IT hardware and the multi-disciplinary skill
sets of people acting as data coordinator.

Conclusions
The authors suggest that results generated from explora-
tory analysis as described here provide a useful approach
to hypothesis generation, but that such results should be
scrutinized by a qualified statistician or bioinformatician
prior to publication.
During the course of OncoTrack, we were confronted

by the reality of the maxim “Scientific research and data
production in life sciences move faster than develop-
ment of the technical infrastructure”. We developed pa-
tient derived pre-clinical models on a large scale and
amassed large data sets from the analysis both of these
models as well as the biological characteristics of the
clinical samples. Consequently, new technology had to
be developed to support the dynamic data linking across
different datasets to enable the users to formulate the
queries and analyses they wanted to explore. The ap-
proach described here is generally applicable to data col-
lected in typical translational medicine research projects.

Availability and requirements
Project home page: e.g. https://oncotrack.etriks.org
Project name: e.g. Oncotrack-eTRIKS data and know-
ledge management platform
Operating system(s): Linux
Programming language: Grail, javascript, R
Other requirements: Tomcat7, JDK 7, Postgres 9.3 or
higher
License: tranSMART is licensed through GPL 3.
SmartR is licensed through Apache.
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